1. Units \& Measurements: A. Z. ALZAHRANI

The SI unit of the speed is
m.s
m / s
$\mathrm{m}^{2} / \mathrm{s}$
$\mathrm{m} / \mathrm{s}^{2}$
2.

The density of element is defined as the mass per unit volume. If the mass is measured in
Kg and the volume is measured in cubic metre, the unit of density is
$\mathrm{m}^{3} / \mathrm{kg}$
$\mathrm{kg} / \mathrm{m}^{3}$
kg.m ${ }^{3}$
None
3.

Using the dimension principle, the equation
$v=a / t$ (where v is the speed and t is time), is correct?
incorrect?
4.

During an examination, a student writes the equation
$a=v^{2} / r$ (a is acceleration, v is speed, and r is distance). Is the equation right?
Yes
No
No enough information, sorry I cant answer

5.

Using the dimension principle, what is the unit of the parameter (k) in the equation $\mathrm{v}=\mathrm{F} . \mathrm{d} / \mathrm{k}$, where v is speed, F is force, and d is distance
kg
m / s
kg.m/s
$\mathrm{kg} . \mathrm{s} / \mathrm{m}$
6.

How many significant digits in the number 9000
1
2
3
4
7.

Which is the right sentence of the followings
Metre is one of the derived units
Speed is measured by the basic units
Length is the only basic unit
Kilogram is one of basic units
8.

The newton is a unit of acceleration
velocity
momentum
force
9.

A square metre is a unit of
length
area
volume
force
10.

Which of these is a unit of volume?
nanometre
milligram cubic centimeters squared metre
11.

If the veocity of a particle is given by
$\mathrm{v}=\mathrm{F} . \mathrm{t} / \mathrm{b}$, (v is speed, F is force, and t is time), the unit of b is
m / s
kg / m
kg
kg/s
12.

Two men have a total mass of 170 kg , if one of them is 176 lbs , the other is 80 kg
80 lbs
90 kg
90 lbs
13.

If the acceleration of a particle is given by $\mathrm{a}=\mathrm{F} . \mathrm{t} / \mathrm{b}$, (v is acceleration, F is force, and t is time) the unit of b is
m / s
kg / m
kg.s
kg/s
14.

The SI unit of force is a
kg.s/m
m / kg.s
$\mathrm{kg} . \mathrm{m} / \mathrm{s}^{2}$
kg.s $/ \mathrm{m}^{2}$
15.

The SI unit of the acceleration is
$\mathrm{m} / \mathrm{s}^{3}$
m / s
$\mathrm{s} / \mathrm{m}^{2}$
$\mathrm{m} / \mathrm{s}^{2}$

