		A CARLES			
PHYS 110 1st E	XAM	11/4/1430H		Time: 90 min.	
Student Name: Morouj Q		Student Number:		Section:	
Q.1 10 ⁴ millisecon (A) 10 ³ s	nds is equal to: (B) 10 ² s	(C) 1 s	(D) 10 s	(E) 10 ⁻¹ s	
$\overline{\mathbf{Q.2}}$ A cubic box v (A) 10 ⁻⁶ m ³	vith an edge of exactly 3 (B) 8×10 ⁻⁶ m ³	cm has a volume of: (vo (C) 2.7×10 ⁻⁵ m ³	olume = edge ³) (D) 6.4×10 ⁻⁵ m ³	(E) 4×10 ⁻⁶	
Q.3 The speed v (A) m/s ⁴	in m/s of a car is give (B) ms	n by $v = bt^3$ where the t (C) m/s	ime t is in seconds.The (D) m/s ³	e unit of b is: (E) m/s ²	
Q.4 The instantar (A) $\frac{dx}{dt}$	(B) $\frac{d}{dt} \left(\frac{d^2 x}{dt^2} \right)$	s given as: (C) $\frac{d^2}{dt^2} \left(\frac{dx}{dt} \right)$	(D) $\frac{d^2}{dt^2} \left(\frac{dv}{dt} \right)$	(E) $\frac{d}{dt} \left(\frac{dx}{dt} \right)$	
Q.5 A particle is r (A) -9.8 m/s ²	noving along the negativ (B) zero	ve x-axis with constant velo (C) constant	ocity. The magnitude of (D) 9.8 m/s ²	f its acceleration is (E) 980 cm/	
Q.6 A car moves	along a straight line with	n velocity in m/s given by ε	$v = t^2 + 3$. The velocity	ocity at t=0 is:	
(A) zero	(B) 4 m/s	(C) 3 m/s	(D) 2 m/s	(E) 6 m/s	
Q.7 Referring to a (A) 6 m/s ²	question 6, the accelerat (B) 8 m/s ²	tion of the car at t = 4s is: (C) 10 m/s ²	(D) 12m/s ²	(E) 4m/s ²	
	of an object is given by	$x = 4t + 2t^2$. Its average ve	locity over the time inte	erval from t = 0 to	
t = 4 s is: (A) 8 m/s	(B) 10 m/s	(C) 12 m/s	(D) 14 m/s	(E) 16 m/s	
Q.9 A particle is r	noving along a straight l	ine. At t=3s its velocity is 2	20 m/s and at t=8s its v	elocity is zero. Th	
average accelera (A) -6 m/s ²	tion is: (B) -2 m/s ²	(C) -3 m/s ²	(D) -4m/s ²	(E) -5 m/s ²	
Q.10 A car travel	s in a straight line with a	n initial velocity of 4 m/s a	nd an acceleration of 2	m/s ² . The distan	
traveled in 4s is: ((A) 36 m	(B) 40 m	(C) 24 m	(D) 28 m	(E) 32 m	
Q.11 A car, initial	ly at rest, travels 32 m in	n 4 s along a straight line v	with constant accelerat	ion. The	
acceleration of th (A) 4 m/s ²		(C) 6 m/s ²	(D) 2 m/s ²	(E) 3 m/s ²	
	initial speed of a car mo (B) 10 m/s	oving a distance of 60 m in (C) 5 m/s			
Q.13 A baseball i (A) -19.6 m/s ²	s thrown vertically up in (B) 19.6 m/s ²	to the air. The acceleration (C) + 9.8 m/s ²	n of the ball at its highe (D) - 9.8 m/s ²	st point is: (E) zero	
Q.14 An object is	thrown straight up from	ground level with a speed	l of 30 m/s. Its height a	fter 1.0 s is:	
(A) 15.1 m	(B) 5.1 m	(C) 45.1 m	(D) 35.1 m	(E) 25.1 m	
Q.15 Referring to (A) 10.2 m	question 14, the maxim (B) 127.6 m	num height is: (C) 81.6 m	(D) 45.9 m	(E) 20.4 m	
Q.16 A stone drop	oped off a 75 m high bu	ilding reaches the ground in (C) 1.35 s	n: (D) 5.53 s	(E) 4.95 s	

(A) 54.2 m/s	(B) 48.5 m/s	(C) 38.3 m/s	(D) 28 m/s	(E) ze
Q.18 A vector (A) 14.14 m	à has x-component c (B) 18 m	of 10 m and y-compone (C) 22.36 m	nt of 15 m. The magnit (D) 35.12 m	ude of this ve (E) 11
Q.19 A vector h A) 8 units	nas a magnitude of 14 u (B) 9 units	units makes an angle o (C) 5 units	f 30° with the x axis. Its (D) 6 units	y componen (E) 7 u
	n in the figure , if the ma		- Carl	y
and 15 units re	espectively then the x-c	component of the result	tant of \vec{A} and \vec{B} is:	Β ◀
(A) -10 units	(B) -15 units	(C) -20units	(D) zero	(E) -5 un
Q.21 The scale	ar product $\hat{i}\cdot\hat{j}$ is equa	I to:		
(A)	(B) 2î	(C) 2ĵ	(D) zero	(E) îĵ
Q.22 if $\vec{A} = 4\hat{i}$	$-6\hat{j}$ then the vector \hat{j}	\sqrt{A} is:		
A) 2î-ĵ	17 I.	110.0 TANK	(D) 2î-3ĵ	(E) 2
Q.23 Two vecto	ors are given as $\vec{A} = 2\hat{i}$	$-2\hat{j}+4\hat{k}$ and $\vec{B}=-$	$\hat{i}+\hat{j}+4\hat{k}$. The result	of Ã−Ē is
(A) 5î-3ĵ			(D) 2î-3ĵ	(E)
Q.24 If the mag	nitude of a vector is 18	m and its x-componen	t of 10m. The angle it n	nakes with the
x-axis is: (A) 48.2°	(B) 63.4°	(C) 66.4°	(D) 60°	(E) (
	nitude of two vectors a	re 10 units and 20 unit	s and the angle betwe	en them is 60
scalar product i (a) 100	(B) 125	(C) zero	(D) 25	(E)
Q.26 Two vect (A) 4	ors are given as $\bar{A}{=}5$ (B) 5	$\hat{j} + 4\hat{k}$ and $\vec{B} = -\hat{i} + \hat{j}$ (C) 6	j , their scalar product (D) 7	$\vec{A} \cdot \vec{B}$ is: (E)
Q.27 The vector	or product $\hat{j} \times \hat{i}$ is equ	al to:		
(A) j	(B) —î	(C)	(D) 1	(E) $-\hat{k}$
Q.28 The value	eofî·(Â×ĵ) is:			
(A) ĵ	(B) zero	(C)	(D) -1	(E) 1
Q.29 Two vecto	ors $\vec{A} = 8\hat{i} + 6\hat{j}$ and	$\vec{B} = -6\hat{i}$, their vector p	product $\vec{A} \times \vec{B}$ is:	
(A) 48k	(B) 30k	(C) 36k	(D) 42k̂	(E)
	The between \vec{A} and \vec{B}	is 30°, and $A = 5$ unit	s, B = 10 units, then the	ne magnitude
Q.30 If the and	Je between A una D			

SOLUTIONS: A. Z. ALZAHRANI

(1) 10^4 milliseconds = $10^4 \times 10^{-3}$ = 10 seconds because 1 sec = 10^3 millisecond

(2)
$$a=3 \text{ cm} = 0.03 \text{ m}$$

 $V=a^{3}=(0.03)^{3}=0.000027 \text{ m}^{3}=2.7 \times 10^{-5} \text{ m}^{3}$
(3) $v=bt^{3} ====> b = v/t^{3} ====> [b] = [v]/[t^{3}]= (L/T)/T^{3} = L/T^{4} = m/s^{4}$

- (4) a=dv/dt = d/dt (dx/dt)
- (5) Since the particle moves with constant velocity, its acceleration is zero

(6)
$$v=t^2+3 ====> v(t=0) = 0+3 = 3 m/s$$

- (7) $a=dv/dt = 2t ===> a(t = 4) = 2 \times 4 = 8 \text{ m/s}^2$
- (8) $x = 4t + 2t^2$ =====> average velocity = Dx/Dt

 $x(t=4) = 4 \times 4 + 2 \times 4^2 = 48 m$, x(t=0) = 0

average velocity = Dx/Dt =(48-0)/(4-0) =12 m/s

- (9) average acceleration= $Dv/Dt = (0-20)/(8-3) = -4 \text{ m/s}^2$
- (10) $x=v_0t + 0.5 at^2 = 4 \times 4 + 0.5 \times 2 \times 4^2 = 32 m$
- (11) $x=v_0t + 0.5at^2$ but the car is initially at rest, that means $v_0=0$

$$x=0.5at^2 =====> a = 2x/t^2 = 2\times 32/4^2 = 4 m/s^2$$

(12) $x=0.5 (v+v0)t = 2x/t - v = 2 \times 60/6 - 15 = 5 m/s$

(13) Since the object is moving under the influence of the gravity, its acceleration at ant instant is constant and equals to 9.8 m/s^2 . Note that the acceleration is always downwords. However, its vector description is -9.8 m/s²

(14) y=v0t - 0.5 gt² = 30×1 - 0.5 ×9.8×1 = 25.1 m (15) H = $v_0^2/2g = 30^2/19.6 = 45.9$ m (16) $y = v_0 t - 0.5 gt^2$ but the stone is freely dropped, then its initial speed is zero

 $y = -0.5 \ gt^2 ====> \ t = (2y/-g)^{0.5} = [(2\times(-75))/(-9.8) \]^{0.5} = {\bf 3.91 \ s}$

(17) v= v₀ -gt = $0 - 9.8 \times 3.91 = -38.3 \text{ m/s}$, but the speed is the magnitude of the velocity, therefore the right answer is 38.3 m/s

(18) The magnitude of the vector $A = [A_x^2 + A_y^2]^{0.5} = [10^2 + 15^2]^{0.5} = 18 \text{ m}$

(19) $A_y = A \sin Q = 14 \sin(30) = 7$ units

(20) $A_x = A \cos Q = 10 \cos(60) = 5$ units, $B_x = -15$ units,

 $(A+B)_x = A_x + B_x = 5 - 15 = -10$ units

(21) i.j = 0 because they are prependicular (angle between them is 90) and their scalr product is zero.

(22) A = 4i - 6j = 2i - 3j

(23) A-B = (2-(-1))i + (-2-1)j + (4-4)k = 3i - 3j

(24) The angle the vector A makes with +x-axis is calculated from

 $A_x = A \cos Q = = = > Q = \cos^{-1}[A_x/A] = \cos^{-1}[10/18] = 56.25^{\circ}$

(25) The scalar product of any A and B vectors is given by

 $A.B = |A||B| \cos Q = 10 \times 20 \times \cos(60) = 100$

(26) $A.B = A_xB_x + A_yB_y + A_zB_z = 0 \times (-1) + 5 \times 1 + 4 \times 0 = 5$ units

(27) $j \times i = -k$

(28)
$$i.(k \times j) = i.(-i) = -1$$

(29) $A \times B = A \times B = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 8 & 6 & 0 \\ -6 & 0 & 0 \end{vmatrix} = 0\hat{i} + 0\hat{j} + (8 \times 0 - 6 \times (-6))\hat{k} = 36\hat{k}$

(30) $A \times B = |A||B| \sin Q = 5 \times 10 \times \sin(30) = 25$ units

مع تمنياتي للجميع بالتوفيق