Q. 110^{4} milliseconds is equal to
(A) $10^{3} \mathrm{~s}$
(B) $10^{2} \mathrm{~s}$
(C) 1 s
(D) 10 s
(E) $10^{-1} \mathrm{~s}$
Q. 2 A cubic box with an edge of exactly 3 cm has a volume of: (volume $=$ edge 3)
(A) $10^{-6} \mathrm{~m}^{3}$
(B) $8 \times 10^{-6} \mathrm{~m}^{3}$
(C) $2.7 \times 10^{-5} \mathrm{~m}^{3}$
(D) $6.4 \times 10^{-5} \mathrm{~m}^{3}$
(E) $4 \times 10^{-6} \mathrm{~m}^{3}$
Q. 3 The speed v in m / s of a car is given by $v=b t^{3}$ where the time t is in seconds. The unit of b is:
(A) $\mathrm{m} / \mathrm{s}^{4}$
(B) ms
(C) m / s
(D) $\mathrm{m} / \mathrm{s}^{3}$
(E) $\mathrm{m} / \mathrm{s}^{2}$
Q. 4 The instantaneous acceleration \vec{a} is given as:
(A) $\frac{d x}{d t}$
(B) $\frac{d}{d t}\left(\frac{d^{2} x}{d t^{2}}\right)$
(C) $\frac{d^{2}}{d t^{2}}\left(\frac{d x}{d t}\right)$
(D) $\frac{d^{2}}{d t^{2}}\left(\frac{d v}{d t}\right)$
(E) $\frac{d}{d t}\left(\frac{d x}{d t}\right)$
Q. 5 A particle
(A) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(B) zero
(C) constant
The magnitu
(D) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(E) $980 \mathrm{~cm} / \mathrm{s}^{2}$
Q. 6 A car moves along a straight line with velocity in m / s given by $v=t^{2}+3$. The velocity at $\mathrm{t}=0$ is:
(A) zero
(B) $4 \mathrm{~m} / \mathrm{s}$
(C) $3 \mathrm{~m} / \mathrm{s}$
(D) $2 \mathrm{~m} / \mathrm{s}$
(E) $6 \mathrm{~m} / \mathrm{s}$
Q. 7 Referring to question 6 , the acceleration of the car at $\mathrm{t}=4 \mathrm{~s}$ is:
(A) $6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $8 \mathrm{~m} / \mathrm{s}^{2}$
(C) $10 \mathrm{~m} / \mathrm{s}^{2}$
(D) $12 \mathrm{~m} / \mathrm{s}^{2}$
(E) $4 \mathrm{~m} / \mathrm{s}^{2}$
Q. 8 The position of an object is given by $x=4 t+2 t^{2}$. Its average velocity over the time interval from $t=0$ to
$\mathrm{t}=4 \mathrm{~s}$ is:
(A) $8 \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $12 \mathrm{~m} / \mathrm{s}$
(D) $14 \mathrm{~m} / \mathrm{s}$
(E) $16 \mathrm{~m} / \mathrm{s}$
Q. 9 A particle is moving along a straight line. At $t=3 \mathrm{~s}$ its velocity is $20 \mathrm{~m} / \mathrm{s}$ and at $\mathrm{t}=8 \mathrm{~s}$ its velocity is zero. The
(A) $-6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $-2 \mathrm{~m} / \mathrm{s}^{2}$
(C) $-3 \mathrm{~m} / \mathrm{s}^{2}$
(D) $-4 \mathrm{~m} / \mathrm{s}^{2}$
(E) $-5 \mathrm{~m} / \mathrm{s}^{2}$
Q. 10 A car travels in a straight line with an initial velocity of $4 \mathrm{~m} / \mathrm{s}$ and an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$. The distance traveled in 4 s is:
((A) 36 m
(B) 40 m
(C) 24 m
(D) 28 m
(E) 32 m
Q. 11 A car, initially at rest, travels 32 m in 4 s along a straight line with constant acceleration. The acceleration of the car is:
(A) $4 \mathrm{~m} / \mathrm{s}^{2}$
(B) $5 \mathrm{~m} / \mathrm{s}^{2}$
(C) $6 \mathrm{~m} / \mathrm{s}^{2}$
(D) $2 \mathrm{~m} / \mathrm{s}^{2}$
(E) $3 \mathrm{~m} / \mathrm{s}^{2}$
Q. 12 What is the initial speed of a car moving a distance of 60 m in 6 s if the final speed was $15 \mathrm{~m} / \mathrm{s}$?
(A) $15 \mathrm{~m} / \mathrm{s}$
(B) $10 \mathrm{~m} / \mathrm{s}$
(C) $5 \mathrm{~m} / \mathrm{s}$
(D) zero
(E) $20 \mathrm{~m} / \mathrm{s}$
Q. 13 A baseball is thrown vertically up into the air. The acceleration of the ball at its highest point is:
(A) $-19.6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(C) $+9.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(E) zero
Q. 14 An object is thrown straight up from ground level with a speed of $30 \mathrm{~m} / \mathrm{s}$. Its height after 1.0 s is:
(A) 15.1 m
(B) 5.1 m
(C) 45.1 m
(D) 35.1 m
(E) 25.1 m
Q. 15 Referring to question 14, the maximum height is:
(A) 10.2 m
(B) 127.6 m
(C) 81.6 m
(D) 45.9 m
(E) 20.4 m
Q. 16 A stone dropped off a 75 m high building reaches the ground in:
(A) 3.91 s
(B) 2.86 s
(C) 1.35 s
(D) 5.53 s
(E) 4.95 s
Q. 17 Referring to question 16, the speed of the stone just before reaching the ground is: Morouj Q
(A) $54.2 \mathrm{~m} / \mathrm{s}$
(B) $48.5 \mathrm{~m} / \mathrm{s}$
(C) $38.3 \mathrm{~m} / \mathrm{s}$
(D) $28 \mathrm{~m} / \mathrm{s}$
(E) zero
Q. 18 A vector $\overrightarrow{\mathrm{A}}$ has x-component of 10 m and y -component of 15 m . The magnitude of this vector is:
(A) 14.14 m
(B) 18 m
(C) 22.36 m
(D) 35.12 m
(E) 11.18 m
Q. 19 A vector has a magnitude of 14 units makes an angle of 30° with the x axis. Its y component is:
A) 8 units
(B) 9 units
(C) 5 units
(D) 6 units
(E) 7 units
Q. 20 As shown in the figure, if the magnitudes of \vec{A} and \vec{B} are 10 units and 15 units respectively then the x -component of the resultant of \vec{A} and \vec{B} is:

(A) -10 units
(B) -15 units
(C) -20units
(D) zero
(E) -5 units
Q. 21 The scalar product $\hat{i} \cdot \hat{j}$ is equal to:
(A) $\hat{\mathrm{k}}$
(B) $2 \hat{\mathrm{i}}$
(C) $2 \hat{\mathrm{j}}$
(D) zero
(E) $\hat{i} \hat{j}$
Q. 22 if $\overrightarrow{\mathrm{A}}=4 \hat{\mathrm{i}}-6 \hat{\mathrm{j}}$ then the vector $1 / 2 \vec{A}$ is:
A) $2 \hat{\mathrm{i}}-\hat{\mathrm{j}}$
(B) $2 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}$
(C) $2 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}$
(D) $2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
(E) $2 \hat{i}-2 \hat{j}$
Q. 23 Two vectors are given as $\vec{A}=2 \hat{i}-2 \hat{j}+4 \hat{k}$ and $\vec{B}=-\hat{i}+\hat{j}+4 \hat{k}$. The result of $\vec{A}-\vec{B}$ is:
(A) $5 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
(B) $4 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
(C) $3 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
(D) $2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
(E) $\hat{\mathrm{i}}-3 \hat{\mathrm{j}}$
Q. 24 If the magnitude of a vector is 18 m and its x -component of 10 m . The angle it makes with the positive x-axis is:
(A) 48.2°
(B) 63.4°
(C) 66.4°
(D) 60°
(E) 56.25°
Q. 25 If the magnitude of two vectors are 10 units and 20 units and the angle between them is 60° then their scalar product is:
(a) 100
(B) 125
(C) zero
(D) 25
(E) 75
Q. 26 Two vectors are given as $\overline{\mathrm{A}}=5 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{B}}=-\hat{\mathrm{i}}+\hat{\mathrm{j}}$, their scalar product $\vec{A} \cdot \vec{B}$ is:
(A) 4
(B) 5
(C) 6
(D) 7
(E) 3
Q. 27 The vector product $\hat{j} \times \hat{i}$ is equal to:
(A) \hat{j}
(B) $-\hat{\mathrm{i}}$
(C) $\hat{\mathrm{k}}$
(D) 1
(E) $-\hat{\mathrm{k}}$
Q. 28 The value of $\hat{i} \cdot(\hat{k} \times \hat{j})$ is:
(A) $\hat{\mathrm{j}}$
(B) zero
(C) \hat{k}
(D) -1
(E) 1
Q. 29 Two vectors $\vec{A}=8 \hat{i}+6 \hat{j}$ and $\vec{B}=-6 \hat{i}$, their vector product $\vec{A} \times \vec{B}$ is:
(A) $48 \hat{\mathrm{k}}$
(B) $30 \hat{\mathrm{k}}$
(C) $36 \hat{k}$
(D) $42 \hat{\mathrm{k}}$
(E) $48 \hat{\mathrm{k}}$
Q. 30 If the angle between \vec{A} and \vec{B} is 30°, and $A=5$ units, $B=10$ units, then the magnitude of the vector product $\vec{A} \times \vec{B}$ is:
(A) 25
(B) 20
(C) 15
(D) 30
(E) 35

SOLUTIONS: A. Z. ALZAHRANI

(1) 10^{4} milliseconds $=10^{4} \times 10^{-3}=10$ seconds
because $1 \mathrm{sec}=10^{3}$ millisecond
(2) $\mathrm{a}=3 \mathrm{~cm}=0.03 \mathrm{~m}$
$\mathrm{V}=\mathrm{a}^{3}=(0.03)^{3}=0.000027 \mathrm{~m}^{3}=2.7 \times 10^{-5} \mathrm{~m}^{3}$
(3) $v=\mathrm{bt}^{3}======>\mathrm{b}=v / \mathrm{t}^{3}======>[\mathrm{b}]=[v] /\left[\mathrm{t}^{3}\right]=(\mathrm{L} / \mathrm{T}) / \mathrm{T}^{3}=\mathrm{L} / \mathrm{T}^{4}=\mathrm{m} / \mathrm{s}^{4}$
(4) $a=d v / d t=d / d t(d x / d t)$
(5) Since the particle moves with constant velocity, its acceleration is zero
(6) $v=\mathrm{t}^{2}+3========>\mathrm{v}(\mathrm{t}=0)=0+3=3 \mathrm{~m} / \mathrm{s}$
(7) $a=d v / d t=2 t=====>a(t=4)=2 \times 4=8 \mathrm{~m} / \mathrm{s}^{2}$
(8) $x=4 t+2 t^{2} \quad=====>$ average velocity $=\mathrm{Dx} / \mathrm{Dt}$
$\mathrm{x}(\mathrm{t}=4)=4 \times 4+2 \times 4^{2}=48 \mathrm{~m}, \quad \mathrm{x}(\mathrm{t}=0)=0$
average velocity $=\mathrm{Dx} / \mathrm{Dt}=(48-0) /(4-0)=12 \mathrm{~m} / \mathrm{s}$
(9) average acceleration $=\mathrm{Dv} / \mathrm{Dt}=(0-20) /(8-3)=-4 \mathrm{~m} / \mathrm{s}^{2}$
(10) $x=v_{0} t+0.5 \mathrm{at}^{2}=4 \times 4+0.5 \times 2 \times 4^{2}=32 \mathrm{~m}$
(11) $x=v_{0} t+0.5 a t^{2}$ but the car is intially at rest, that means $v_{0}=0$
$\mathrm{x}=0.5 \mathrm{at}^{2}=======>\mathrm{a}=2 \mathrm{x} / \mathrm{t}^{2}=2 \times 32 / 4^{2}=4 \mathrm{~m} / \mathrm{s}^{2}$
(12) $\mathrm{x}=0.5(\mathrm{v}+\mathrm{v} 0) \mathrm{t}=====->\mathrm{v}_{0}=2 \mathrm{x} / \mathrm{t}-\mathrm{v}=2 \times 60 / 6-15=5 \mathrm{~m} / \mathrm{s}$
(13) Since the object is moving under the influence of the gravity, its acceleration at ant instant is constant and equals to $9.8 \mathrm{~m} / \mathrm{s}^{2}$. Note that the acceleration is always downwords. However, its vector description is $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(14) $y=v 0 t-0.5 \mathrm{gt}^{2}=30 \times 1-0.5 \times 9.8 \times 1=25.1 \mathrm{~m}$
(15) $\mathrm{H}=\mathrm{v}_{0}{ }^{2} / 2 \mathrm{~g}=30^{2} / 19.6=45.9 \mathrm{~m}$
(16) $y=v_{0} t-0.5 \mathrm{gt}^{2}$ but the stone is freely dropped, then its initial speed is zero $\mathrm{y}=-0.5 \mathrm{gt}^{2}======>\mathrm{t}=(2 \mathrm{y} /-\mathrm{g})^{0.5}=[(2 \times(-75)) /(-9.8)]^{0.5}=3.91 \mathrm{~s}$
(17) $\mathrm{v}=\mathrm{v}_{0}-\mathrm{gt}=0-9.8 \times 3.91=\underline{-38.3 \mathrm{~m} / \mathrm{s}}$, but the speed is the magnitude of the velocity, therefore the right answer is $38.3 \mathrm{~m} / \mathrm{s}$
(18) The magnitude of the vector $\mathrm{A}=\left[\mathrm{A}_{\mathrm{x}}{ }^{2}+\mathrm{A}_{\mathrm{y}}{ }^{2}\right]^{0.5}=\left[10^{2}+15^{2}\right]^{0.5}=18 \mathrm{~m}$
(19) $A_{y}=A \sin Q=14 \sin (30)=7$ units
(20) $A_{x}=A \cos Q=10 \cos (60)=5$ units, $B_{x}=-15$ units,
$(A+B)_{x}=A_{x}+B_{x}=5-15=-10$ units
(21) i.j = 0 because they are prependicular (angle between them is 90) and their scalr product is zero.
(22) $A=4 i-6 j=====>1 / 2 A=2 i-3 j$
(23) $\mathrm{A}-\mathrm{B}=(2-(-1)) \mathrm{i}+(-2-1) \mathrm{j}+(4-4) \mathrm{k}=3 \mathrm{i}-3 \mathrm{j}$
(24) The angle the vector A makes with +x -axis is calculated from
$\mathrm{A}_{\mathrm{x}}=\mathrm{A} \cos \mathrm{Q}=====>\mathrm{Q}=\cos ^{-1}\left[\mathrm{~A}_{\mathrm{x}} / \mathrm{A}\right]=\cos ^{-1}[10 / 18]=56.25^{\circ}$
(25) The scalar product of any A and B vectors is given by
$A \cdot B=|A||B| \cos Q=10 \times 20 \times \cos (60)=100$
(26) $A \cdot B=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=0 \times(-1)+5 \times 1+4 \times 0=5$ units
(27) $\mathrm{j} \times \mathrm{i}=-\mathrm{k}$
(28) i. $(\mathrm{k} \times \mathrm{j})=\mathrm{i} .(-\mathrm{i})=-1$
(29) $\mathrm{A} \times \mathrm{B}=A \times B=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 8 & 6 & 0 \\ -6 & 0 & 0\end{array}\right|=0 \hat{i}+0 \hat{j}+(8 \times 0-6 \times(-6)) \hat{k}=36 \hat{k}$
(30) $A \times B=|A||B| \sin Q=5 \times 10 \times \sin (30)=25$ units

