King Abdulaziz University	Faculty of Science	Department of Physics			
PHYSICS 110	Final Exam	A. Z ALZ	AHRANI		
1. The volume of a sphere of radius r is given by V=4/3 π r ^a . The value of the power a is:					
(a) 1	(b) 2	(c) 3	(d) 4		
2. A dimensionless quant	tities A is described as $A =$	k v l, where v and l are	velocity and		
length, respectively. The SI	I unit of k is:				
(a) s/m ²	(b) m/s ²	(c) m/s	(d) s		
3. Given a formula of force	as $F = \alpha \beta + \lambda$. The unit of	λ is:			
(a) Dimensionless	(b) N.s	(c) kg.m/s ²	(d) N		
4. The velocity of a particle	e in terms of its acceleration :	is given by $v = ka$, the unit	of k is:		
(a) m/s	(b) m	(c) m.s	(d) s		
5. The acceleration of a case $f(x) = 2\pi (x^2)$.	r, starting its motion with a	speed of 5 m/s, is given by	the equation		
a(t)=2t (m/s ²). The average	acceleration of the car in the $(h) = 2 m/c^2$	e interval t=1s and t= 2s is: (a) $6 \text{ m}/a^2$	(d) 4 m/s^2		
	(0) 2 11/3	(c) 0 III/S	(u) 4 111/5		
6. The position of a particle	e is given by the equation x	= $1.5t^2-t^4$ (m), the speed of t	he ball when		
(a) 0.5 m/s	(b) 1.0 m/s	(c) 1.5 m/s	(d) 2.0 m/s		
7. A car moves with a cons	stant speed of 12 m/s. If the	e driver uniformly increases	the speed in		
(a) 5.3 m/s^2	(b) 3.3 m/s ²	(c) 1.3 m/s^2	(d) 13 m/s ²		
8. A particle moves along t	he x-axis with constant acce	leration of 3 m/s². If its initi	al position is		
1.2 m and initial speed is 2.	1 m/s, its position at t=2 s is:		(1) 10 (
(a) 9.4 m	(4) 10.4 m	(c) 11.4 m	(d) 12.4 m		
9. A stone is thrown vertically upwards from the top of a tall building with a speed of 19.6 m/s.					
I he height of the building	If the stone took 12 s to hit t	ne ground is:	(d) 10.6 m		
(a) 490 III	(0) 470.4 III	(c) 560 III	(a) 19.0 III		
10. A ball is thrown vertically upwards. If the ball takes 2 s to pass a window of height 1.2 m					
10 ated at 10 m above the g	(b) 11.2 m	(c) 13.5 m	(d) 15 5 m		
(a) 10.4 III	(b) 11.2 m	(c) 13.5 m	(u) 15.5 III		
11. A rock is thrown down at 2 m/s from a height of 25.8 m above the ground. The rock will					
(a) 1.2 s	(b) 2.1 s	(c) 4.2 s	(d) 5 s		
			\ <i>,</i>		

12. For vectors $\vec{A} = 2\hat{i} - \hat{j} + \hat{j}$	$3\hat{k}$ and $\vec{B} = \hat{i} + 2\hat{j} - \hat{k}$, the let	ngth of the vector $\vec{A} - \vec{B}$ is:			
(a) 2	(b) 3	(c) 4	(d) 5		
13. The angle that the vector	or $\vec{A} = 2\hat{i} - \hat{j} + 3\hat{k}$ makes wit	h the positive x-axis is:			
(a) 42 [°]	(b) 58 [°]	(c) 98 ⁰	(d) 109 ⁰		
14. The vector that is norm	al to both vectors $\vec{A} = 2\hat{i} - \hat{j}$	$+3\hat{k}$ and $\vec{B} = \hat{i} + 2\hat{j} - \hat{k}$ is:			
(a) $-5\hat{i}+5\hat{j}+5\hat{k}$	(b) $5\hat{i} - 5\hat{j} + 5\hat{k}$	(c) $5\hat{i} + 5\hat{j}$	(d)-5î		
15. If vector $\vec{A} = 2\hat{i} - \hat{j} + 3\hat{k}$	is perpendicular to vector l	$\vec{D} = x\hat{i} + 2\hat{j}$, the value of $x \mathbf{w}$	ill be:		
(a) 1	(b) 2	(c) 3	(d) 4		
16. The result of $(\hat{i} \times \hat{k}) \times \hat{j}$ is	S:				
(a) −1	(b) – j	(c) 0	(d) ĵ		
17. For non-zero vectors \vec{A}	and \vec{B} , $\vec{A} \cdot \vec{B} = \frac{4}{5} \vec{A} \times \vec{B} $ whe	en the angle between them is	3:		
(a) 0^0	(b) 36.7 [°]	(c) 51.3°	(d) 90°		
18. Vector \vec{a} is added to ve	ector \vec{b} , the result is $2\hat{i} + 2\hat{j}$. If \vec{b} is subtracted from \vec{a} ,	the result is		
$-8\hat{i}+6\hat{j}$. The magnitude of	fāis:				
(a) 5.4	(b) 5	(c) 4	(d) 3.2		
19. A particle starts from origin with initial speed of 5 m/s along the positive x-axis. If its					
(a) $6\hat{i} - 2\hat{j}$	(b) $2\hat{i} + 6\hat{j}$	(c) $\hat{i} - 2\hat{j}$	(d) 6î		
20. A ball is kicked at an angle of 50° above the horizontal with an initial speed of 24 m/s. The					
(a) 57.9 m	(b) 34.5 m	(c) 28.9 m	(d) 17.3 m		
21. A projectile is fired to achieve a maximum range of 140 m, the speed of the projectile must					
(a) 17 m/s	(b) 27 m/s	(c) 37 m/s	(d) 45 m/s		
22. A projectile is fired at an angle θ above the horizontal. It takes 15 s to reach its range of 140 m. Its speed at the highest point is:					
(a) 9.3 m/s	(b) 15.2 m/s	(c) 19.6 m/s	(d) 22 m/s		
23. A projectile is fired in such a way that its horizontal range equals three times its maximum height, the launch angle is:					
(a) 82.1°	(b) 60.9 ^o	(c) 53.1°	(d) 65.8°		

24. An object having a speed of 1.256 m/s rotates in a circular path. If it completes two					
revolutions in 5 s, the cent	ripetal acceleration is:	(a) 1.4 m/s^2	(d) $6 m/a^2$		
(a) 2.31 III/S	(U) 5.10 III/S ²	(C) 4.4 III/S ²	(a) 0 III/S ⁻		
25. A force of 20 N is app	lied to move a stationary bo	dy of mass 5 kg. The speed	of the body		
(a) 1.25 m/s	(b) 12.5 m/s	(c) 16 m/s	(d) 18 m/s		
26. A force of 10 N is appl m/s , the mass of the body is	ied to move a stationary boo	ly. If the speed of the body a	after 2 s is 4		
(a) 2 kg	(b) 5 kg	(c) 8 kg	(d) 10 kg		
27. A box, has mass of 4 k making an angle of 30° abo	g, is pulled over a frictionle ve the horizontal. The norm	ss floor with a force of mag al force is:	nitude 40 N		
(a) 39.2 N	(b) 59.2 N	(c) 19.2 N	(d) 40 N		
28. A box, has weigh of 98 N, is pulled over a rough, flat surface with a horizontal force of magnitude 50 N. If the box moves with constant speed of 2 m/s, the coefficient of kinetic friction is:					
(a) 0.51	(b) 0.31	(c) 0.22	(d) 0.15		
29. A car rotates a circular path of radius 200 m with constant speed of 25 m/s. The car's mass if it has a centripetal force of 2500 N is:					
(a) 600 kg	(b) 700 kg	(C) 800 kg	(a) 1000 kg		
30. A block of mass 4.2 kg	is pulled up a frictionless in	clined plane of angle 30° by	a horizontal		
force. If the block moves w	rith constant speed of 2.6 m/s	, the magnitude of the force	is:		
(a) 23.8 N	(b) 71.3 N	(c) 42.2 N	(d) 13.9 N		
31. A 5 kg body is horizont	ally moving with constant sj m/s is:	peed of 6 m/s. The work done	e to increase		
(a) 64 J	(b) 128 J	(c) 160 J	(d) 192 J		
32. An 40 N crate slides with constant speed a distance of 4 m downward along a rough slope					
(a) 80 J	(b) 0 J	(c) 160 J	(d) 200 J		
33. An 40 N crate slides with constant speed a distance of 4 m downward along a rough slope					
(a) 80 J	(b) 0 J	(c) 160 J	(d) 200 J		
34. A person lifts a 100 N weight 2 m above the ground during 2 s. The power required is:(a) 40 W(b) 60 W(c) 80 W(d) 100 W					

35. A 2 kg block is released from rest 8 m above the ground. Its kinetic energy when it has							
(a) 80 J	(b) 117.6 J	(c) 176.2 J	(d) 185.3 J				
36. A block attache	36. A block attached to a spring with a spring constant of 80 N/m oscillates on a horizontal						
frictionless floor. If	the total mechanical ener	gy is 0.1 J, the greatest exte	ension of the spring				
from its equilibrium	length is:		_				
(a) 0.02 m	(b) 0.03 m	(c) 0.025 m	(d) 0.05 m				
37. Three particles of masses $m_1=3$ kg, $m_2=5$ kg, and $m_3=2$ kg are located in xy plane as (0,0),							
(a) 0.9, 0.9	(b) 0.9, 1.0	(c) 1.0, 0.9	(d) 1.0, 1.0				
38. A car has a kinetic energy of 72000 J and a momentum of 12000 kg.m/s. The car's speed is:							
(a) 12 m/s	(b) 15 m/s	(c) 16 m/s	(d) 18 m/s				
39. In a perfectly inelastic collision, a car of mass 800 kg moving with a speed of 20 m/s collides							
with another stationary car of mass 1200 kg. If they move together after the collision, their							
speed is:							
(a) 12 m/s	(b) 10 m/s	(c) 8 m/s	(d) 6 m/s				
40. A 0.075 kg bullet moving at 250 m/s strikes a wooden block that is initially at rest. If the							
bullet embeds the block and move together with a speed of 17 m/s, the mass of the block is:							
(a) 1.03 kg	(b) 1.25 kg	(c) 1.4 kg	(d) 1.9 kg				