1. The volume of a sphere of radius r is given by $V=4 / 3 \pi r^{a}$. The value of the power a is:
(a) 1
(b) 2
(c) 3
(d) 4
2. A dimensionless quantities A is described as $A=k v l$, where v and l are velocity and length, respectively. The SI unit of k is:
(a) $\mathrm{s} / \mathrm{m}^{2}$
(b) $\mathrm{m} / \mathrm{s}^{2}$
(c) m / s
(d) s
3. Given a formula of force as $F=\alpha \beta+\lambda$. The unit of λ is:
(a) Dimensionless
(b) N.s
(c) $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
(d) N
4. The velocity of a particle in terms of its acceleration is given by $v=k a$, the unit of k is:
(a) m / s
(b) m
(c) $\mathrm{m} . \mathrm{s}$
(d) s
5. The acceleration of a car, starting its motion with a speed of $5 \mathrm{~m} / \mathrm{s}$, is given by the equation $a(\mathrm{t})=2 \mathrm{t}\left(\mathrm{m} / \mathrm{s}^{2}\right)$. The average acceleration of the car in the interval $\mathrm{t}=1 \mathrm{~s}$ and $\mathrm{t}=2 \mathrm{~s}$ is:
(a) $3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $6 \mathrm{~m} / \mathrm{s}^{2}$
(d) $4 \mathrm{~m} / \mathrm{s}^{2}$
6. The position of a particle is given by the equation $x=1.5 t^{2}-t^{4}(m)$, the speed of the ball when its acceleration vanishes is:
(a) $0.5 \mathrm{~m} / \mathrm{s}$
(b) $1.0 \mathrm{~m} / \mathrm{s}$
(c) $1.5 \mathrm{~m} / \mathrm{s}$
(d) $2.0 \mathrm{~m} / \mathrm{s}$
7. A car moves with a constant speed of $12 \mathrm{~m} / \mathrm{s}$. If the driver uniformly increases the speed in which it covers 240 m in 12 s , the acceleration of the car is:
(a) $5.3 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3.3 \mathrm{~m} / \mathrm{s}^{2}$
(c) $1.3 \mathrm{~m} / \mathrm{s}^{2}$
(d) $13 \mathrm{~m} / \mathrm{s}^{2}$
8. A particle moves along the x-axis with constant acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$. If its initial position is 1.2 m and initial speed is $2.1 \mathrm{~m} / \mathrm{s}$, its position at $\mathrm{t}=2 \mathrm{~s}$ is:
(a) 9.4 m
(4) 10.4 m
(c) 11.4 m
(d) 12.4 m
9. A stone is thrown vertically upwards from the top of a tall building with a speed of $19.6 \mathrm{~m} / \mathrm{s}$. The height of the building if the stone took 12 s to hit the ground is:
(a) 490 m
(b) 470.4 m
(c) 380 m
(d) 19.6 m
10. A ball is thrown vertically upwards. If the ball takes 2 s to pass a window of height 1.2 m located at 10 m above the ground, the maximum height of the ball is:
(a) 10.4 m
(b) 11.2 m
(c) 13.5 m
(d) 15.5 m
11. A rock is thrown down at $2 \mathrm{~m} / \mathrm{s}$ from a height of 25.8 m above the ground. The rock will take:
(a) 1.2 s
(b) 2.1 s
(c) 4.2 s
(d) 5 s
12. For vectors $\vec{A}=2 \hat{\imath}-\hat{j}+3 \hat{k}$ and $\vec{B}=\hat{i}+2 \hat{j}-\hat{k}$, the length of the vector $\vec{A}-\vec{B}$ is:
(a) 2
(b) 3
(c) 4
(d) 5
13. The angle that the vector $\vec{A}=2 \hat{\imath}-\hat{j}+3 \hat{k}$ makes with the positive x-axis is:
(a) 42^{0}
(b) 58^{0}
(c) 98°
(d) 109°
14. The vector that is normal to both vectors $\vec{A}=2 \hat{\imath}-\hat{j}+3 \hat{k}$ and $\vec{B}=\hat{i}+2 \hat{j}-\hat{k}$ is:
(a) $-5 \hat{\imath}+5 \hat{j}+5 \hat{k}$
(b) $5 \hat{\imath}-5 \hat{j}+5 \hat{k}$
(c) $5 \hat{\imath}+5 \hat{j}$
(d) $-5 \hat{\imath}$
15. If vector $\overrightarrow{\mathrm{A}}=2 \hat{i}-\hat{\mathrm{j}}+3 \hat{\mathrm{k}}$ is perpendicular to vector $\overrightarrow{\mathrm{D}}=x \hat{\mathrm{i}}+2 \hat{\mathrm{j}}$, the value of x will be:
(a) 1
(b) 2
(c) 3
(d) 4
16. The result of $(\hat{i} \times \hat{k}) \times \hat{j}$ is:
(a) -1
(b) $-\hat{\mathrm{j}}$
(c) 0
(d) \hat{j}
17. For non-zero vectors \vec{A} and $\vec{B}, \vec{A} \cdot \vec{B}=\frac{4}{5}|\vec{A} \times \vec{B}|$ when the angle between them is:
(a) 0^{0}
(b) 36.7^{0}
(c) 51.3^{0}
(d) 90°
18. Vector \vec{a} is added to vector \vec{b}, the result is $2 \hat{\imath}+2 \hat{j}$. If \vec{b} is subtracted from \vec{a}, the result is $-8 \hat{i}+6 \hat{j}$. The magnitude of \vec{a} is:
(a) 5.4
(b) 5
(c) 4
(d) 3.2
19. A particle starts from origin with initial speed of $5 \mathrm{~m} / \mathrm{s}$ along the positive x -axis. If its acceleration is $\vec{a}=2 \hat{i}-4 \hat{j}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$, the position vector of the particle at $\mathrm{t}=1 \mathrm{~s}$ is:
(a) $6 \hat{i}-2 \hat{j}$
(b) $2 \hat{i}+6 \hat{j}$
(c) $\hat{i}-2 \hat{j}$
(d) $6 \hat{\imath}$
20. A ball is kicked at an angle of 50° above the horizontal with an initial speed of $24 \mathrm{~m} / \mathrm{s}$. The maximum height of the ball is:
(a) 57.9 m
(b) 34.5 m
(c) 28.9 m
(d) 17.3 m
21. A projectile is fired to achieve a maximum range of 140 m , the speed of the projectile must be:
(a) $17 \mathrm{~m} / \mathrm{s}$
(b) $27 \mathrm{~m} / \mathrm{s}$
(c) $37 \mathrm{~m} / \mathrm{s}$
(d) $45 \mathrm{~m} / \mathrm{s}$
22. A projectile is fired at an angle θ above the horizontal. It takes 15 s to reach its range of 140 m . Its speed at the highest point is:
(a) $9.3 \mathrm{~m} / \mathrm{s}$
(b) $15.2 \mathrm{~m} / \mathrm{s}$
(c) $19.6 \mathrm{~m} / \mathrm{s}$
(d) $22 \mathrm{~m} / \mathrm{s}$
23. A projectile is fired in such a way that its horizontal range equals three times its maximum height, the launch angle is:
(a) 82.1°
(b) 60.9°
(c) 53.1^{0}
(d) 65.8^{0}
24. An object having a speed of $1.256 \mathrm{~m} / \mathrm{s}$ rotates in a circular path. If it completes two revolutions in 5 s , the centripetal acceleration is:
(a) $2.51 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3.16 \mathrm{~m} / \mathrm{s}^{2}$
(c) $4.4 \mathrm{~m} / \mathrm{s}^{2}$
(d) $6 \mathrm{~m} / \mathrm{s}^{2}$
25. A force of 20 N is applied to move a stationary body of mass 5 kg . The speed of the body after 4 s will be:
(a) $1.25 \mathrm{~m} / \mathrm{s}$
(b) $12.5 \mathrm{~m} / \mathrm{s}$
(c) $16 \mathrm{~m} / \mathrm{s}$
(d) $18 \mathrm{~m} / \mathrm{s}$
26. A force of 10 N is applied to move a stationary body. If the speed of the body after 2 s is 4 m / s, the mass of the body is:
(a) 2 kg
(b) 5 kg
(c) 8 kg
(d) 10 kg
27. A box, has mass of 4 kg , is pulled over a frictionless floor with a force of magnitude 40 N making an angle of 30° above the horizontal. The normal force is:
(a) 39.2 N
(b) 59.2 N
(c) 19.2 N
(d) 40 N
28. A box, has weigh of 98 N , is pulled over a rough, flat surface with a horizontal force of magnitude 50 N . If the box moves with constant speed of $2 \mathrm{~m} / \mathrm{s}$, the coefficient of kinetic friction is:
(a) 0.51
(b) 0.31
(c) 0.22
(d) 0.15
29. A car rotates a circular path of radius 200 m with constant speed of $25 \mathrm{~m} / \mathrm{s}$. The car's mass if it has a centripetal force of $\mathbf{2 5 0 0} \mathrm{N}$ is:
(a) 600 kg
(b) 700 kg
(c) 800 kg
(d) 1000 kg
30. A block of mass 4.2 kg is pulled up a frictionless inclined plane of angle 30° by a horizontal force. If the block moves with constant speed of $2.6 \mathrm{~m} / \mathrm{s}$, the magnitude of the force is:
(a) 23.8 N
(b) 71.3 N
(c) 42.2 N
(d) 13.9 N
31. A 5 kg body is horizontally moving with constant speed of $6 \mathrm{~m} / \mathrm{s}$. The work done to increase the speed of the body to $10 \mathrm{~m} / \mathrm{s}$ is:
(a) 64 J
(b) 128 J
(c) 160 J
(d) 192 J
32. An 40 N crate slides with constant speed a distance of 4 m downward along a rough slope that makes an angle of 30° with the horizontal. The work done by the gravity is:
(a) 80 J
(b) 0 J
(c) 160 J
(d) 200 J
33. An 40 N crate slides with constant speed a distance of 4 m downward along a rough slope that makes an angle of 30° with the horizontal. The work done by the normal force is:
(a) 80 J
(b) 0 J
(c) 160 J
(d) 200 J
34. A person lifts a 100 N weight 2 m above the ground during 2 s . The power required is:
(a) 40 W
(b) 60 W
(c) 80 W
(d) 100 W
35. A 2 kg block is released from rest 8 m above the ground. Its kinetic energy when it has fallen 6 m is:
(a) 80 J
(b) 117.6 J
(c) 176.2 J
(d) 185.3 J
36. A block attached to a spring with a spring constant of $80 \mathrm{~N} / \mathrm{m}$ oscillates on a horizontal frictionless floor. If the total mechanical energy is 0.1 J , the greatest extension of the spring from its equilibrium length is:
(a) 0.02 m
(b) 0.03 m
(c) 0.025 m
(d) 0.05 m
37. Three particles of masses $m_{1}=3 \mathrm{~kg}, m_{2}=5 \mathrm{~kg}$, and $m_{3}=2 \mathrm{~kg}$ are located in $x y$ plane as $(0,0)$, $(1,2)$, and $(2,0)$, respectively. The coordinates of the center of mass are
(a) $0.9,0.9$
(b) $0.9,1.0$
(c) $1.0,0.9$
(d) 1.0, 1.0
38. A car has a kinetic energy of 72000 J and a momentum of $12000 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$. The car's speed is:
(a) $12 \mathrm{~m} / \mathrm{s}$
(b) $15 \mathrm{~m} / \mathrm{s}$
(c) $16 \mathrm{~m} / \mathrm{s}$
(d) $18 \mathrm{~m} / \mathrm{s}$
39. In a perfectly inelastic collision, a car of mass 800 kg moving with a speed of $20 \mathrm{~m} / \mathrm{s}$ collides with another stationary car of mass 1200 kg . If they move together after the collision, their speed is:
(a) $12 \mathrm{~m} / \mathrm{s}$
(b) $10 \mathrm{~m} / \mathrm{s}$
(c) $8 \mathrm{~m} / \mathrm{s}$
(d) $6 \mathrm{~m} / \mathrm{s}$
40. A 0.075 kg bullet moving at $250 \mathrm{~m} / \mathrm{s}$ strikes a wooden block that is initially at rest. If the bullet embeds the block and move together with a speed of $17 \mathrm{~m} / \mathrm{s}$, the mass of the block is:
(a) 1.03 kg
(b) 1.25 kg
(c) 1.4 kg
(d) 1.9 kg
