

ELECTRIC CHARGE

ALI ALZAHRANI

ELECTRIC CHARGE

- Electric charge is an intrinsic property of particles, such as electrons and protons.
- \triangleright There are two types of charges: **positive** and **negatives**.
- Electrons have a negative charge.
- Protons have a positive charge.
- Charged particles can interact to create an electrical force.
- \triangleright Similar charges produce a repulsive force, where each one repels the other.
- Dissimilar charges produce an attractive force, where each one attracts the other.

NEUTRAL AND CHARGED ATOMS

(A) Equality of the numbers of electrons and protons produces a zero net charge; the atom is called neutral atom, such as $Ar.$

(B) Removing an electron from an atom produces a net positive charge; the charged atom is called a positive ion (cation), such as Na.

(C) Adding an electron to an atom produces a net negative charge and a negative ion (anion)., such as Cl.

ELECTROSTATIC CHARGE

- The charge on an ion is called an electrostatic charge.
- There are different ways to electrostatically charge a non charged particle:
	- Friction which transfers electrons between two objects,
	- Contact with a charged body which results in the transfer of electrons, and
	- Induction which produces a charge redistribution of electrons in a material.

CONDUCTORS AND INSULATORS

- \blacktriangleright Materials are classified into four categories in terms of their capability of conducting electricity.
- Insulators: materials that a significant amount of electrons are not free to move.
- **Conductors:** materials that a significant amount of electrons are free to move.
- **Semiconductors**: materials that sometimes behave like insulators and sometimes behave like conductors, intermediate between conductors and insulators.
- Superconductors: materials that almost all electrons are free to move, perfect conductors.

QUANTIZATION OF CHARGE

- The fundamental charge is the electron charge (e) which is 1.6×10^{-19} Coulomb (C), where the Coulomb (C) is the SI unit of charge.
- Any electric charge (q) is quantized, that means it depends on the number of electrons (n) , according to

 $q = n e$

 \triangleright The electric current is the rate of change of the electric charge

$$
i=\frac{dq}{dt}
$$

Therefore , 1 Coulomb $(C) = 1$ Ampere (A) . 1 second (s) .

ELECTROSTATIC FORCE - COULOMB'S LAW

 The magnitude of the electrostatic force (attractive or repulsive) between two charged particles q_1 and q_2 separated by a distance r is determined by

$$
F = \frac{k||q_1||q_2|}{r^2}
$$

where k is a constant equals to 9.0×10^9 N. m 2 / $\rm C^2$, which is also defined as

$$
k = \frac{1}{4\pi\varepsilon_0}
$$

where ε_0 is known as the permittivity and equals to 8.85×10^{-12} C² /(N. m²).

• The electric force is a vector quantity, therefore the resultant force on an object is the superposition vector of all forces acting on it due to others.

1. How many electrons would be removed from a metal to have a charge of 4.8 μ C?

Solution

We know that the electric charge is quantized and defined by the equation

 $q = n e$

$$
n = \frac{q}{e} = \frac{4.8 \times 10^{-6}}{1.6 \times 10^{-19}} = 3.0 \times 10^{13}
$$
 electrons

2. 5×10^{20} electrons pass between two points in 4 s, calculate the current.

Solution

We know that the current is the rate of change of charge, therefore

$$
i = \frac{dq}{dt} = \frac{q}{t}
$$

But the charge is

$$
q = n e
$$

$$
i = \frac{ne}{t} = \frac{5 \times 10^{20} \times 1.6 \times 10^{-19}}{4} = 20 \text{ A}
$$

3. Two charges 4 µC and - 3 µC are separated by 2 cm. Calculate the force between them ? Solution

Since the signs of the charges are different, they produce an attractive force. The magnitude of this force is

$$
F = \frac{k||q_1||q_2|}{r^2}
$$

$$
F = \frac{9 \times 10^{9} \times 4 \times 10^{-6} \times 3 \times 10^{-6}}{0.02^{2}} = 270 \text{ N}
$$

4. Calculate the distance between two point charges 2.4 μ C and $-$ 1.8 μ C for the electrostatic force to be of magnitude 10.8 N?

Solution

The magnitude of the electrostatic force is given by

$$
F = \frac{k||q_1||q_2|}{r^2} \qquad \rightarrow \qquad r = \sqrt{\frac{k||q_1||q_2|}{F}}
$$

$$
r = \sqrt{\frac{k||q_1||q_2|}{F}} = \sqrt{\frac{9 \times 10^9 \times 2.4 \times 10^{-6} \times 1.8 \times 10^{-6}}{10.8}} = 0.06 \, m = 6 \, cm
$$

5. A point charge 2.0 µC is placed at a distance 4 cm form another point charge q. If the attractive force between them is 56.25 N, find q.

Solution

The magnitude of the electrostatic force is given by

$$
F = \frac{k|q_1||q_2|}{r^2} \qquad \rightarrow \qquad q_2 = \frac{F r^2}{k q_1}
$$

$$
q_2 = \frac{56.25 \times 0.04^2}{9 \times 10^9 \times 2.0 \times 10^{-6}} = 5.0 \times 10^{-6} \text{C} = 5 \mu \text{C}
$$

Since the force is ATTRACTIVE, the signs of the charges are DIFFERENT. Therefore the unknown charge is negative $-5.0 \mu C$.

6. Three point charges 2.0, 3.0, and $-4.0 \mu C$ are located as shown in the figure. Find the magnitude of the force acting on the $2 \mu C$ charge due to the others.

Since the signs of charges (2 μ C and 3 μ C) are similar, the force is repulsive. That means the force will be to left and its magnitude is

$$
F_{12} = \frac{9 \times 10^9 \times 2 \times 10^{-6} \times 3 \times 10^{-6}}{2^2} = 0.0135 \text{ N}
$$

Since the signs of charges (2 μ C and -4 μ C) are dissimilar, the force is attractive. That means the force will be to right and its magnitude is

$$
F_{13} = \frac{9 \times 10^{9} \times 2 \times 10^{-6} \times 4 \times 10^{-6}}{5^{2}} = 0.00288 \text{ N}
$$

Therefore the magnitude of the force on the $2 \mu C$ particle due to the other charged particles is

 $F = |F_{12} - F_{13}| = |0.0135 - 0.00288| = 0.01062 \text{ N}$

7. Three point charges 1.0, 2.0, and 3.0 µC are arranged as shown in the figure. Find the

magnitude of the force acting on the $2 \mu C$ charge due to the others.

Since the signs of charges (1 μ C and 2 μ C) are similar, the force will be up along the positive y-direction with magnitude of

$$
F_{12} = \frac{9 \times 10^{9} \times 1 \times 10^{-6} \times 2 \times 10^{-6}}{3^{2}} = 0.002 \text{ N}
$$

Since the signs of charges (2 μ C and 3 μ C) are also similar, the force will have two components (one along x and other along y axes)

$$
F_{13x} = \frac{9 \times 10^{9} \times 2 \times 10^{-6} \times 3 \times 10^{-6}}{5^{2}} \cdot \frac{4}{5} = 0.00173 \text{ N}
$$

$$
F_{13y} = \frac{9 \times 10^{9} \times 2 \times 10^{-6} \times 3 \times 10^{-6}}{5^{2}} \cdot \frac{3}{5} = 0.0013 \text{ N}
$$

Therefore the magnitude of the force on the $2 \mu C$ particle due to the other charged particles is

 $F_r = 0.00173 N$ $F_v = 0.002 + 0.0013 = 0.0033 N$ $F = \sqrt{F_x^2 + F_y^2} = 0.00372 N$

8. Two charges 9.0 and 16.0 µC are separated by a distance of 2 m. Where should a third charge 2 µC be placed for a net force on it zero?

Solution

As the charges are of same sign, the third charge must be placed between them and close to the smaller charge in order to have a zero net force.

$$
\frac{9}{x^2} = \frac{16}{(2-x)^2}
$$

Taking the square root of the above, we get

$$
\frac{3}{x} = \frac{4}{2-x}
$$

This leads to

$$
x=\frac{6}{7}=0.86\ m
$$

9. Four identical charges (2 μ C) are located at the vertices of a square of side 5 cm. Calculate the magnitude of the electric force on a 5 µC located at the center of the square.

Solution

The electric forces on the 5 µC due to the other charges have the same magnitude. Each charge along the diagonal will experience equal and opposite force on the 5 µC charge, therefore, the resultant force is zero.

